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The unstable transition behaviour of a bounded, current-carrying, two-dimensional 
magnetofluid is explored, using the hydrodynamic theory developed for parallel shear 
flows as a guide. The time development of a perturbed driven magnetohydrodynamic 
sheet pinch is simulated numerically. The nonlinear partial differential equations 
of two-dimensional, incompressible, viscoresistive magnetohydrodynamics are ad- 
vanced in time numerically by means of a semi-implicit, mixed Fourier collocation- 
finite difference algorithm. Nonlinear excitation of the higher wavenumbers results in 
the development of electric current sheets of finite extent, as well as the formation of 
‘attraction currents ’ centred at the magnetic O-points. A secondary instability 
mechanism, the dynamic tearing of the electric current sheet, is also observed. This 
dynamic tearing leads to sawtooth-like temporal oscillations in certain global 
quantities. The long time state of the system resembles a nonlinearly saturated state 
with significant excitation of many wavenumbers. Some features of this state can 
be understood by means of a Landau nonlinear stability theory based on certain 
assumptions about the perturbation energy balance. 

1. Introduction 
The magnetohydrodynamic sheet pinch is a two-dimensional field structure that 

is believed to approximate a wide variety of physical situations. It consists of a plane 
electric current layer in a static magnetofluid, across which a d.c. magnetic field 
changes sign. It is well known that this configuration can be unstable to  perturbations 
in the velocity or magnetic fields (e.g. Furth, Killeen & Rosenbluth 1963). Finite 
resistivity allows the magnetic field topology to evolve into the magnetic X-point 
reconnection geometry (Dungey 1958). This rearrangement of the magnetic field is 
generally accompanied by a high-speed motion of the magnetofluid away from the 
magnetic X-point, indicating that some of the magnetic energy is being transformed 
into kinetic energy at the magnetic X-point. Large electric currents also develop in 
the region of the magnetic X-point, indicating that ohmic dissipation of the magnetic 
energy is significant in this region. 

These features have led to the belief that magnetohydrodynamic (MHD) sheet 
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pinch instabilities might be related to many, otherwise unexplained, physical 
phenomena. Solar physicists, for instance, hypothesize that MHD sheet pinch 
reconnection occurs during the evolution of solar flares, and perhaps produces a rapid 
ejection of charged particles (e.g. Sonnerup 1979; Forbes & Priest 1983). The fusion 
community has retained an  interest in this configuration, since it may be thought 
of as a prototype for resistive instabilities of a kind thought to  contribute to the 
breakdown of plasma confinement in many magnetic fusion devices, such as 
tokamaks (e.g. Bateman 1978 ; White 1983; Manheimer & Lashmore-Davies 1984). 

One common feature of all such studies is that  the theoretical effort has run far 
ahead of experimental measurement. The impossibility of performing solar physical 
and astrophysical ' experiments ' is clear, while laboratory experiments dealing with 
magnetic reconnection have not been performed in the temperature regime where 
they could be adequately diagnosed (the remarkable work of Gekelman, Stenzel & 
Wild must be excepted (Wild, Gekelman & Stenzel 1981 ; Stenzel & Gekelman 1981 ; 
Gekelman & Stenzell981; Gekelman, Stenzel & Wild 1982 ; Stenzel, Gekelman & Wild 
1982, 1983). 

Theoretical treatments have often been divided along disciplinary lines. I n  space 
physics magnetic reconnection has often been studied as a steady state phenomenon 
(e.g. Vasyliunas 1975; Soward & Priest 1977), while the fusion community has looked 
at  i t  as a temporally evolving instability. We shall adopt the latter point of view, 
and henceforth limit the discussion to this case. 

The inherent complexity of the magnetic reconnection process renders analysis 
difficult, so that it is a common practice first to simplify in some way the equations 
which govern the behaviour of the system. By far the most widespread technique 
is to  linearize the governing equations, and then to attack the instability problem 
by means of a normal mode analysis (Furth et al. 1963; Wesson 1966). The 
magnetofluid viscosity is customarily ignored in these analyses, but more recent 
investigations have shown its importance (Dahlburg et al. 1983; Bondeson & Sobel 
1984). 

Analytic theories dealing with the nonlinear properties of the unstable eigenmodes 
of the magnetohydrodynamic sheet pinch have been given by Rutherford (1973) and 
by White et al. (1977). These analyses assume that the viscous dissipation and 
magnetofluid inertia are negligible, and follow the evolution of a single eigenmode 
into the nonlinear regime. The exponential growth of the linear mode is predicted 
to slow nonlinearly into a phase of algebraic growth, followed by the nonlinear 
saturation of the mode. More recent analyses by Pao, Rosenau & Guo (1983), and 
Dahlburg (1985) have shown that viscous and inertial effects are important in 
determining the nonlinear rate of growth and the saturated amplitude of the 
perturbation. 

I n  order to understand better such complex nonlinear processes, i t  is by now 
common to simulate by means of numerical methods the temporal evolution of the 
magnetofluid. Computations that have been performed of the nonlinear evolution of 
the perturbed magnetohydrodynamic sheet pinch have exhibited certain methodo- 
logical differences, both in terms of the model and the numerical method employed. 
Schnack & Killeen (1979, 1980) employed a conservative finite difference scheme. 
Using an inviscid, compressible magnetofluid model, they followed the nonlinear 
evolution of eigenmodes of the linearized problem. They found a period of exponential 
growth, followed by nonlinear saturation of the mode. They were particularly 
interested in determining the nonlinear effects on the topology of the magnetic field. 
Matthaeus & Montgomery (1981) employed a Fourier spectral (Galerkin truncation) 
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method in space. They considered a viscoresistive, incompressible magnetofluid in a 
periodic box. Two electric current sheets of opposite sign were present in the 
computational box. Small random perturbations were imposed initially on both the 
magnetic and velocity fields, and the system was allowed to  evolve without any 
driving. As a result the ohmic decay of the electric current profile was significant 
during the course of their simulations. These authors focused on the nonlinear 
behaviour of the electric current density, which emphasizes the excitation of the high 
wavenumber components of the magnetic field. They found that localized current 
structures, which they called filaments, would develop in the vicinity of the magnetic 
X-point. This localization indicated that many of the high wavenumber components 
of the magnetic field were excited, a feature indicative of turbulent behaviour. 
Subsequently, Matthaeus (1982) reported a related result for the magnetofluid 
vorticity . 

It is by now well known that magnetofluids exhibit a tendency to become excited 
a t  very small spatial scales due to the nonlinearities in the governing equations (Fyfe, 
Montgomery & Joyce 1977 ; Pouquet 1978 ; Orszag & Tang 1979). I n  order to  simulate 
accurately the behaviour of a magnetofluid, i t  is necessary to resolve all of the spatial 
scales which are excited. The extent of the high wavenumber spectrum is determined 
by the magnitude of the dissipation coefficients. The number of spatial scales retained 
is also limited by the computational resources which are available. Combining these 
two criteria, we have the result that  the present generation of computers, which 
includes the CDC CYBER 205 and the CRAY-XMP, allows the simulation of 
adequately resolved two-dimensional magnetofluids with Lundquist numbers no 
greater than approximately 1000 (e.g. Matthaeus & Lamkin 1985). Note that for the 
MHD sheet pinch this parameter regime is linearly unstable for electric current 
profiles of interest (Dahlburg et al. 1983). 

Low values of the resistive Lundquist number have a serious consequence for pure 
decay simulations of the magnetohydrodynamic sheet pinch (Matthaeus & 
Montgomery 1981 ; Matthaeus 1982), namely the mean magnetic field decays rapidly 
as a function of time. The rapidity of this ohmic decay of the mean magnetic field 
implies that  the evolution of the perturbations is affected significantly, since the 
exchange of energy between the mean magnetic field and the perturbed fields depends 
on the form of the mean magnetic field. All of the interesting dynamical events are 
seen to occur in ten to  twenty Alfvhn transit times. 

I n  this paper the decay of the mean magnetic field is opposed by a constant external 
electric field. This allows us to  use a low enough value of the resistive Lundquist 
number to ensure adequate resolution and yet not have the evolution of the system 
dominated by the ohmic decay of the mean magnetic field. For the case of arbitrary 
infinitesimal initial perturbations, alterations in the mean magnetic field will only 
occur when these perturbations attain finite amplitude. The external driving also 
ensures that the long time state of the system will be non-trivial. For instance, a 
state of secondary equilibrium is possible, in which the amount of energy injected 
into the system would be equal to  the amount of energy dissipated. 

While the previous paragraphs have emphasized the importance of ohmic dissipation 
in the problem, i t  must be stressed that viscous dissipation also plays a role. It is 
a common practice in the literature to  ignore this process in the analysis of MHD 
sheet pinch instabilities (Furth et al. 1963; Rutherford 1973; White et al. 1977; 
Schnack & Killeen 1979, 1980). By kinetic theory estimates, however, the viscosity 
is of at least the same order of magnitude as the magnetic diffusivity in plasmas of 
interest (cf. Braginskii 1965). Viscous dissipation will be especially significant in 
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regions of high vorticity, and just such regions are known to develop in the vicinity 
of magnetic X-points (Matthaeus 1982). Hence, assuming that the magnetofluid is 
inviscid will lead to an incomplete picture of the magnetic X-point dynamics. This 
is important when considering the possibility of a saturated state, for in that state 
the energy injected is balanced by the dissipated energy. 

Finally the nature of the perturbations must be discussed. To simplify the analytic 
problem it is common to consider single-mode perturbations on prescribed laminar 
equilibria (Furth et al. 1963; Rutherford 1973; White et al. 1977). It is, however, 
doubtful that such equilibria are ever accurately achieved within any fusion 
confinement device. Furthermore, the irregular character of the startup phase in such 
devices virtually guarantees that the existing perturbations are extremely complex. 
We can represent this situation somewhat by using a moderately high level of random 
noise in the magnetic and velocity fields as the initial perturbations. The initial 
activation of many wavenumbers in both fields ensures that larger regions of phase 
space are accessible to the system than are allowed by single eigenmode perturbations. 
As will be seen, the system executes a different evolution than that predicted by a 
single mode analysis. 

We report here on numerical simulations of the nonlinear evolution of the driven 
magnetohydrodynamic sheet pinch. We have formulated the problem in such a way 
that the large amount of theory and techniques that have been developed for the 
study of stability and transition in parallel shear flows can be utilized. The geometric 
situation is that characteristic of plane Poiseuille or plane Couette flow, namely the 
magnetofluid is confined between two infinite parallel plates. Periodicity of the 
magnetofluid in the coordinates parallel to the walls is assumed to render the problem 
tractable. An incompressible, viscoresistive, two-dimensional magnetofluid model is 
used. The decay of the mean magnetic profile is opposed by a constant, external 
electric field. The initial perturbations in the magnetic and velocity fields are in 
general random (although cases with eigenmode initial conditions are considered). A 
mixed Fourier collocation-finite difference algorithm with a semi-implicit temporal 
differencing scheme based on the algorithm of Moin & Kim (1982) is used to advance 
the system in time. 

The presence of an electric field allows us to investigate the long time state of the 
driven system and the processes by which it is achieved. The nonlinear evolution of 
this driven system is seen to exhibit rather different behaviour than the pure decay 
case. The maximum nonlinearity is seen during the coalescence of the magnetic 
islands which arise spontaneously in the evolution of the system. A secondary 
instability, the dynamic tearing of the electric current sheet, is observed, as is the 
formation of nonlinear ‘attraction currents ’ centred on the magnetic O-points. The 
long time state of the system resembles a nonlinear saturation of the initial 
disturbance with many of the systems’ wavenumbers being excited. 

The governing equations, geometry, and initial equilibrium state of the system are 
described in $2. The computational procedure is described in 93, as are the 
diagnostics. Representative computational results are reported in $4. A model for the 
nonlinear evolution of supercritical linear instabilities in the vicinity of the neutral 
stability boundary is given in $5.  The predictions of this model are compared with 
numerical simulation. The results are discussed in $6. 
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2. Formulation of the problem 
The magnetofluid under consideration is confined between parallel, rigid, impene- 

trable plates. The plates are regarded as perfect conductors coated with a thin layer 
of insulating material. This boundary permits the entrance of magnetic flux to drive 
the system (Montgomery 1984). No-slip boundary conditions are imposed on the 
viscous magnetofluid at the walls. The normal component of the magnetic field is 
constrained to equal zero at the walls, but the tangential component of the electric 
current is unrestricted. The x-direction is regarded as periodic, while all variation in 
y is ignored. 

The evolution of an incompressible magnetofluid is governed by the following 
equations, written in a dimensionless form (e.g. Montgomery 1984) : 

au aw 
ax a Z  
-+- = 0, 

aA aA aA 
-+u-+w- = ~ ( z )  V2A+ E ,  at ax a2 

( 2 . 1 ~ )  

(2 . lb )  

( 2 . 1 4  

( 2 . l d )  

where 

v(x, z, t )  = magnetofluid velocity = (u(x, z, t ) ,  0 ,  w(z, z, t ) ) ,  
n(z ,z ,  t )  = p + ! j ~ ~ + @ ~  = total fluid pressure, 
p ( z ,  z, t )  = mechanical pressure/mass density, 
A(x ,  z, t )  = magnetic vector potential = At,, 
v = kinematic viscosity, 

d2Ao d2Ao -l 
~ ( z )  = ~ ( z  = 0) (-Iz-) (w) = dimensionless resistivity profile, 

z = 0)- = constant, externally applied electric field, 
E = -q(  (%olz*o 
AJz) = initial mean magnetic vector potential. 

The following terms are also of importance: 
o(x, z, t )  = (V x u),  = magnetofluid vorticity, 
B(x, z, t )  = V x At, = magnetic field = (B,(x, z, t ) ,  0, B,(x, z, t ) ) ,  
J(x, z ,  t )  = -V2A = electric current density, 

Unit mass density is assumed. 

= resistive Lundquist number, 
1 

S =  
V ( Z  = 0) 

1 
M = - = viscous Lundquist number. 

This specification of E and ~ ( z )  allows the system to maintain the unperturbed 
equilibrium (Furth et al. 1963; Waddell et al. 1976). In addition, it simulates the 

V 
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FIGURE 1 .  Run D; mean magnetic vector potential. Solid line, t = 0;  dashed line, t = 161.009. 

frequent experimental feature of a higher interior electrical conductivity profile, 
which in turn is due t o  higher temperatures. The electrical conductivity profile is, 
however, assumed to be temporally constant. 

The confining plates are regarded as perfect conductors coated with a thin layer 
of insulating dielectric. In  the dimensionless units, the magnetic vector potential 
boundary condition becomes 

A(z  = 1 )  = A(z = - 1 )  = Constant, (2.2) 

independent of time. 
The tangential electric current a t  the walls is unrestrained. 
No-slip boundary conditions are imposed on the velocity field of the viscous 

magnetofluid ; 

u(z = 1 )  = u(z = - 1 )  = 0, w(z = 1 )  = w(z = - 1 )  = 0. (2.3a, b )  

We choose an initial mean magnetic field which gives a sheet pinch-like field 
configuration. The initial mean magnetic vector potential is 

A,(z) = - 2  tan-l 

with the corresponding mean magnetic field 

B,(z) = tanp1 yz, 
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z 

FIGURE 2. Run D; mean electric current density. Solid line, t = 0; dashed line, t = 161.009. 

and the corresponding mean electric current density 

JJZ) = y(  1 + y222)-1, (2.6) 

where y may be thought of as a ‘stretching parameter’ (Dahlburg et al. 1983). The 
mean fluid velocity is zero. This choice of mean fields gives a configuration in which 
there exists an infinite plane electric current layer with a magnetic field changing sign 
across it. The initial mean magnetic vector potential for the case y = 8, M = S = 200 
is shown in figure 1. The corresponding initial mean electric current density is shown 
in figure 2. This case will be discussed at  length in $4, so it is useful to know certain 
other physically relevant parameters. For this case the initial mean (B t )  is equal to 
19.001. For this mean magnetic field and unit mass density the Alfv6n speed is equal 
to 1.23. If the characteristic length is taken to be the half-’channel width, then the 
initial Alfv6n transit time equals 111.23 = 0.813. The electric field in this case reduces 
to E = y / S  = 0.04. 

Random perturbations are imposed initially on both the magnetic and velocity 
fields, and the perturbed system is then allowed to evolve in time. The total initial 
magnetic vector potential is given by 

A ( z , z , t =  0) = A , ( z ) + e X X  [(A,, cosmx+B,, sinmz) cos(+nnz) 
n m  

+(em, cosmz+D,, sinmx) sin($(n+ l)nz)], (2.7) 

where m = 1 , 2 , 3 , .  . . , mmax; n = 1 , 3 , 5 , .  . . , nmax; E < 1 ; A,,, B,,, C,,, D,, = ran- 
dom real numbers with zero mean and unit variance. 
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The initial stream function is expressed in terms of Chandrasekhar-Reid functions 
(Chandrasekhar 1961) as 

cosh A, z cog A, z 
coshh, cosh, 

(sinhpnz Sinpnzj], (2.8) 

@(x, z, t = 0) = 6 C C (Qmn cosmx+ R,, sin mx) 
n m  

+ (S,, cos mx+ T,, sin mx) 
sinhp, sinp, 

wherem = 1 , 2 , 3 , .  . . ,mmaX;n = 1 ,2 ,3 ,  ... ,nmax;e 6 l;Qmn,Rmn,Smn,Tmn = random 
real numbers with zero mean and unit variance; A, =positive roots of 
(tanhA+tanA = 0); p, = positive roots of (cothp-cotp = 0); and: 

U ( Z , Z ,  t )  = --; a@ w(x, 2,  t )  = -. a+ 
a Z  ax 

3. Computational procedure 
The numerical method used to solve the governing equations is based on the 

algorithm developed by Moin & Kim (1982) for the study of parallel shear flows. The 
equations to be advanced temporally, i.e. equations ( 2 . 1 ~ )  to ( 2 . 1 4 ,  are written in 
the rotation form. The spatially discrete and time continuous version of the ideal form 
of these equations conserves energy exactly. As a consequence of the energy 
conservation property, writing the equations in this form leads to enhanced stability 
for the numerical method. 

The x-direction, which is regarded as periodic, is naturally discretized by the 
Fourier collocation method (Gottlieb & Orszag 1977). All nonlinear product terms 
are evaluated most conveniently in configuration space. The derivatives are 
evaluated in Fourier space without phase error. Most of the z derivatives are 
discretized by second-order central differences on a stretched grid. The difference 
formulae are obtained by differentiating the second-order Lagrange interpolating 
polynomial an appropriate number of times, and then evaluating the resulting 
expression at  the central grid point. The z derivative term in the continuity equation 
(2.1 c )  is evaluated by a first-order finite difference discretization. 

A staggered mesh in the z-direction is used for the velocity, pressure, and magnetic 
vector potential values. The pressure is defined at the cell centres, 5, which are given 
bv 

where k = 1 ,2 ,3 ,  . . . , k,,,. The velocity and magnetic vector potential are defined at 
the cell edges of the staggered mesh, which are given by 

(3.2) I zo = - 1.0, 

zk = a( c k - i  + &+;) ; k = 1 , 2 , 3 ,  - * . , k,,, - 1 9 

ZLmax = 1.0. 

The mesh is constructed so as to augment the numerical resolution in the central 
region and at the walls of the channel. 

A semi-implicit temporal discretization is employed. All nonlinear terms and the 
parallel diffusion terms are advanced explicitly in time by the second-order Adam- 
Bashforth method. The vertical diffusion terms are advanced implicitly in time by 
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the Crank-Nicolson method. Terms involving the pressure are advanced implicitly 
in time by the backward Euler method. The incompressibility of the.magnetofluid 
is enforced implicitly. 

To illustrate better the method, first collect the terms to be advanced explicitly: 

Substitute these expressions into the governing equations, and then discretize the 
system in time: 

(3.4) 

Un+i = u n - A t ( 3 n + 1  +iAt [3H;-H;-l]+;vAt [ ( 3 + l + ( 3 ]  

~ n + l =  w n - A t ( 3  n+l +iAt [ 3 H ; - H ; - i ] + i ~ A t [ ( p )  pw n+i +(g)n], 

where At is defined to be the size of the time step, and the superscript n indexes the 
time level. 

This system of partial differential equations is Fourier transformed in x, resulting 
in a set of ordinary differential equations in z for each value of the x wavenumber 
k, : 

(3 .5a)  

(3.5b) 

(3.5c) 

(3 .5d)  

where the tildes denote one-dimensional, Fourier transformed quantities. The 
functions &," represent terms involving the pressure, velocity field, magnetic field, 
and electric field at time steps n and n - 1. 

Equations (3 .5a ,b ,d)  are evaluated at the cell edges, and equation ( 3 . 5 ~ )  is 
evaluated at the cell centres. When this system of equations is discretized in x an 
algebraic system of equations in block tridiagonal form for the Fourier transformed 
field variables results. This system of equations can be inverted by conventional 
methods. 

Periodic boundary conditions in z on all field variables are built into the algorithm. 
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No-slip boundary conditions are imposed on the velocity field at the walls at z = 1 
and z = - 1 : 

(3.6a, b )  

The normal component of the magnetic field is constrained to  equal zero a t  the walls, 
i.e. 

u(zo) = U(Zkrnax) = 0,  W ( Z 0 )  = W(Zkrnax) = 0. 

A(z,)  = A(zkmax) = Constant. (3.7) 

The tangential electric current a t  the walls remains constant to  about four significant 
digits, although this boundary condition is not explicitly enforced. Because of the 
use of the staggered grid, boundary conditions on the pressure term at the wall are 
unnecessary and hence are not imposed (Harlow & Welch 1965). 

The following diagnostics are employed to  follow the evolution of the system. 
Contour plots of the magnetic vector potential, the electric current density, the 
velocity stream function, and the vorticity of the magnetofluid, exhibit structures 
which occur during the evolution of the computed fields. The contours which are 
plotted represent equal increments of magnitude over the range of values of the field. 
Note that in two  dimensions contours of constant magnetic vector potential are 
equivalent to magnetic field lines. Plots of the mean magnetic vector potential and 
the mean electric current density are also useful diagnostics, since they show the 
deformations in these fields due to  the action of the nonlinear terms. 

Certain global quantities are also useful in following the evolution of the system : 

Mean magnetic energy : 

f JOZ" SI, I B,(z, t )  6, I dx dz, 

f s,'" SI, I v(z, 2, t )  I dzd.2, 

Perturbed magnetic energy : 

f Jo2" SI, I B(z,  z ,  t )  - B,(z, t )  6, I dzdz, 

Kinetic energy : 

One-dimensional modal magnetic energy : 

One-dimensional modal kinetic energy : 

where Bo(z, t )  2, is defined to  be the mean magnetic field (= B(k, = 0,  z ,  t ) ) ,  B(k,, z, t )  
is the one-dimensional Fourier transformed magnetic field, and v(k,, z ,  t )  is the 
one-dimensional Fourier transformed velocity field. I n  the plots, the configuration 
space global quantities are area averaged to facilitate comparison with the one- 
dimensional modal energies. 

An obvious test of the computer code is its ability to simulate correctly the 
evolution of the linearly unstable modes. This can be achieved by initializing i t  with 
small enough doses of the eigenfunctions that the effect of the nonlinear terms is 
relatively insignificant. As a test case, we consider B,(z) = arctan (82), M = S = 100, 



Transition properties of the driven magnetohydrodynamic sheet pinch 81 

and with the parallel wavenumber of the disturbance equal to one. For this case the 
growth rate of the unstable eigenmode is found to equal 0.1822 (a more detailed 
discussion of the linearized problem is presented in $5) .  Details of this validation run 
are given in table 1, where it is called run A. The timestep used throughout equals 
0.007854. From the computer perturbed energies, linear growth rates can be 
calculated and compared with the result predicted by the linear theory. The change 
in kinetic energy implies a velocity field growth rate equal to 0.1815, which differs 
from the predicted value by 0.384%. The change in perturbed magnetic energy 
implies a perturbed magnetic field growth rate equal to 0.1816, which differs from 
the predicted value by 0.329 %. At the conclusion of run A the mean magnetic energy 
is 99.995% of its initial value, indicating that deformation of the mean magnetic 
profile is insignificant and hence that the nonlinear terms in the governing equations 
have not been excited significantly. 

A second validation run of the same kind is listed in table 1 as run F. In this run 
the same initial mean magnetic field is used, but the Lundquist numbers are increased 
to 200. The parallel wavenumber of the linear disturbance is equal to two. For this 
case the unstable eigenmode has a growth rate equal to 0.252 (see table 3). The same 
timestep is used as in run A. For this case the change in kinetic energy implies a 
velocity field growth rate of 0.251, which differs from the predicted value by 0.397 % . 
The change in the perturbed magnetic energy implies a perturbed magnetic field 
growth rate of 0.251, which is in error by the same amount. A t  the conclusion of this 
run the mean magnetic energy is 99.997 yo of its initial value. 

4. Evolution from random initial conditions 
Data for the runs performed is given in table 1. We describe here in detail case 

D, which exhibits all of the essential features found in the other runs. The timestep 
equals 0.001 9635 initially and is subsequently reduced as necessary in order that the 
CFL condition be satisfied. The initial perturbations are given in (2.7) and (2.8)) with : 

A :  n,,, = 8 ;  mmax = 8 ;  E = 0.002, 

$: nmax = 7 ;  mmax = 16; E = 0.002. 

The initial size of the perturbed fields relative to the mean magnetic field can be 
determined in a global sense by a comparison of the initial values of the various 
energies (see table 2), where the perturbed energies are defined as having no mean 
part. It is seen that the perturbed magnetic energy is initially 0.0278 % of the mean 
magnetic energy, and that the kinetic energy is initially 0.0292% of the mean 
magnetic energy. Figure 1 shows the initial mean magnetic vector potential profile, 
and figure 2 shows the initial mean electric current density profile. Figures 3 to 6 are 
contour plots of, respectively, the initial magnetic vector potential, the initial electric 
current density, the initial velocity stream function, and the initial vorticity of the 
magnetofluid. 

The initial phase of the system’s evolution is characterized by an extremely rapid 
net loss of perturbed energy, both magnetic and kinetic. This is perhaps due to the 
decaying of the damped eigenmodes, or alternatively to the nonlinear transfer of 
excitations into the viscous and ohmic dissipation ranges. The mean magnetis energy 
remains relatively unchanged. 

After this period a phase of growth ensues, with most of the growth being 
concentrated in the lower k, velocity and magnetic modes. Figure 7 shows the 
perturbed energies as functions of time. The initial phase of rapid perturbed energy 
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1 .o 

0.5 

Time 0 15.708 31.416 161.009 

Mean magnetic energy 0.75602 0.75402 0.67569 0.571 89 
Perturbed magnetic 

Kinetic 
energy 0.21026 x 0.44266 x 0.99003 x lo-* 0.63404 x 

energy 0.22076~ 0 .16813~  0.30036 x 0 .16103~  

TABLE 2. Energies at significant times during run D. 

I ! I 

- - 

-0.5 -1 

-~ 
-1.0 t I I 1 

0 1.57 3.14 4.71 6.28 
X 

FIQURE 3. Run D; contour plot of magnetic vector potential at t = 0. The maximum contour 
value is 1.18. The minimum contour value is 0.0983. 

loss is evident in these plots. Numerical solution of the linearized problem indicates 
that several of the lower k, modes are linearly unstable, with the k, = 2 eigenmode 
being the most unstable. The results of the eigenmode analysis are shown in table 
3. In  agreement with the linear theory, by this time in the run (approximately t = 16) 
the k, = 2 magnetic and velocity modes exhibit the greatest enhancement. An 
inspection of the modal energy plots for the lower k, magnetic and velocity modes, 
figures 8 and 9, makes this evident. 

Note, however, that some decay in the mean magnetic energy is apparent after 
approximately t = 15.7 (see figure 10). A t  this time, the mean magnetic energy equals 
0.75402, or 99.74 % of its initial value. This decay of the mean magnetic field indicates 
that the nonlinear terms have become significant. Hence the linear theory, which 
assumes the stationarity of the mean, does not by this time serve as an adequate 
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FIGURE 4. Run D; contour plot of electric current density a t  t = 0. The maximum contour 
value is 8.16. The minimum contour value is -0.765. 

X 

FIGURE 5. Run D; contour plot of velocity stream function at t = 0. The maximum contour 
value is 0.00436. The minimum contour value is -0.00451. 
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X 

FIGURE 6. Run D; contour plot of vorticity at t = 0. The maximum contour value is 2.12. The 
minimum contour value is - 1.61. 

50 100 I50 
t 

FIGURE 7. Run D; perturbed energies us. time. Solid line, kinetic energy; dashed line, perturbed 
magnetic energy. 
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k X  Growth rate 

1 0.203 
2 0.252 
3 0.181 

TABLE 3. Linear growth rates for B,(z) = arctan (82), M = S = 200. 

t 

FIGURE 8. Run D; natural logarithm of one dimensional modal magnetic energies vs. time. 
Solid line, k, = 1 ; dashed line, k, = 2; mixed line, kx = 3. 

description of the behaviour of the system. The time a t  which the perturbations attain 
h i t e  amplitude can be inferred from the ratios of the perturbed energies to the mean 
magnetic energy (see table 2). At t = 15.708, the perturbed magnetic energy is 0.059 yo 
of the mean magnetic energy, and the kinetic energy is 0.022 % of the mean magnetic 
energy. This is not very different from the initial value of these ratios. What is 
different is that the perturbed energy is now more concentrated in the k, = 2 and 
k, = 1 modes than it was initially. The consequence of this concentration is the 
activation of the nonlinearities. Figures 11-14 are contour plots of the scalar fields 
at this time. Note especially the presence of the two magnetic X-points. The presence 
of two magnetic O-points is indicated by the bending of the contours of constant 
magnetic vector potential. 

The two magnetic O-points soon merge. The system achieves its maximum 
nonlinearity at the conclusion of this coalescence process, which occurs at  approxi- 
mately t = 31. A t  t = 31.416, near to this time, the perturbed magnetic energy is 
1.46 % of the mean magnetic energy, and the kinetic energy is 0.44 % of the mean 
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5.0 - 

0 SO 100 150 
t 

FIGURE 9. Run D; natural logarithm of one dimensional modal kinetic energies us. time. Solid 
line, k, = 1 ; dashed line, k, = 2; mixed line, k, = 3. 

t 

FIGURE 10. Run D; mean magnetic energy v8. time. 
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FIGURE 11. Run D; contour plot of magnetic vector potential at t = 15.708. The maximum 
contour value is 1.20. The minimum contour value is 0.100, 

0 1.51 3.14 4.71 6.28 
X 

FIGURE 12. Run D; contour plot of electric current density at t = 15.708. The maximum 
contour value is 8.61. The minimum contour value is 0.709. 
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1 1.57 3.14 4.71 6.28 

X 

FIQURE 13. Run D; contour plot of velocity stream function a t  t = 15.708. The maximum contour 
value is 0.009 16. The minimum contour value is -0.009 14. The direction of flow into the magnetic 
X-point located near the centre of this plot is from the top and bottom. 

0.51 

-0.5 

28 

FIGURE 14. Run D; contour plot of vorticity at t = 15.708. The maximum contour value is 
0.825. The minimum contour value is -0.825. 
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FIGURE 16. Run D;  contour plot of electric current density at t = 31.416. The maximum 
contour value is 8.59. The minimum contour value is 0.716. 
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0 1.57 3.14 4.71 6.28 
X 

FIQURE 17. Run D; contour plot of velocity stream function a t  t = 31.416. The maximum contour 
value is 0.0244. The minimum contour value is -0.0244. The direction of flow into the magnetic 
X-point located near the centre of this plot is from the top and bottom. 

- 1.01 I I I 
Q 1.57 3.14 4.71 6 

X 

28 

FIQTJRE 18. Run D; contour plot of vorticity at t = 31.416. The maximum contour value is 
1.78. The minimum contour value is -1.78. 
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I I I 

1 I .57 3.14 4.71 6.28 
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FIQURE 19. Run D; contour plot of magnetic vector potential at t = 47.125. The maximum 
contour value is 1.23. The minimum contour value is 0.103. 

X 

!8 

FIQIJRE 20. Run D; contour plot of electric current density at t = 47.125. The maximum 
contour value is 8.52. The minimum contour value is 0.710. 
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- 1.0 
0 1.57 3.14 4.11 6.28 

X 

FIGURE 21. Run D; contour plot of velocity stream function at t = 47.125. The maximum contour 
value is 0.0220. The minimum contour value is -0.0220. The direction of flow out of the magnetic 
0-point located near (5 = 0, z = 0) is towards the top and bottom. 

-1.01 I I 
0 1.57 3.14 4.71 6.28 

X 

FIGURE 22. Run D;  contour plot of vorticity at t = 47.125. The maximum contour value is 
1.77. The minimum contour value is -1.77. 
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FIGURE 24. Run D; contour plot of electric current density at t = 161.009. The maximum 
contour value is 7.68. The minimum contour value is 0.640. 
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- 1.01 I I I 
0 1.57 3.14 4.71 
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10 

FIQURE 25. Run D; contour plot of velocity stream function at t = 161.009. The maximum contour 
value is 0.0318. The minimum contour value is -0.0319. The direction of flow out of the magnetic 
0-point located near the centre of this plot is towards the top and bottom. 

magnetic energy (see table 2). Maximum nonlinearity is characterized by two 
structures which appear in the electric current. First, an electric current sheet of finite 
extent in the x direction is seen to form. Second, the electric current in the vicinity 
of the magnetic 0-point increases in magnitude and becomes peaked. This latter field 
configuration gives rise to an approximately radially inward Lorentz force towards 
the magnetic 0-point. Hence these electric currents can be termed ‘attraction 
currents’. Figures 15 to 18 are contour plots of the scalar fields at t = 31.416, near 
the time of maximum nonlinearity. 

Contour plots a t  a later time, t = 47.125, show that this configuration is itself 
subject to instabilities (figures 19-22). The electric current sheet splits into two 
filaments, around each of which forms the distinctive structure of eddies, magnetic 
0-points, etc. (Matthaus & Montgomery 1981). This secondary instability is appar- 
ently of a different kind than those seen earlier in the run (cf. Syrovatskii 1979; 
Biskamp 1984). The earlier instabilities were those appropriate to the infinite plane 
current layer. In  contrast, the electric current sheet is a nonlinear structure of finite 
extent in the x-direction. Furthermore, the infinite plane current layer is a static 
configuration, whereas the finite current sheet is essentially dynamic. From its 
inception, there is a significant flow of magnetofluid into and out of the current sheet. 

This dynamic tearing of the electric current sheet implies the formation of multiple 
magnetic 0-points. A second magnetic 0-point is seen to form, and then begin 
coalescing with the original magnetic 0-point. This phase of coalescence leads to the 
second peak in the perturbed energies. These processes repeat themselves, leading to 
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FIGURE 26. Run D;  contour plot of vorticity at t = 161.009. The maximum contour value is 
1.92. The minimum contour value is - 1.92. 

sawtooth-like temporal oscillations in the perturbed energies. Coincident with this, 
the mean magnetic energy is seen to approach a constant value (figure 10). 

The ultimate state achieved resembles a state of secondary equilibrium, with many 
wavenumbers of the system being excited. At t = 161.009, the ultimate time 
achieved, the mean magnetic energy has decayed to  approximately 75.6 % of its initial 
value (see table 2). Comparison of the initial and final mean magnetic vector 
potential is made in figure 1. The same comparison is made for the electric current 
density in figure 2. At this time the perturbed magnetic energy is 1.1 1 yo of the mean 
magnetic energy. The kinetic energy is 0.28 yo of the mean magnetic energy. Figures 
23-26 are contour plots of the scalar fields at the ultimate time, t = 161.009. This 
field configuration has existed almost unchanged since approximately t = 100,  
although the magnetic O-point has exhibited a slight drift in the positive x-direction. 
Note that the presence of regions of high vorticity implies that  viscous dissipation 
is a non-ignorable process. This is borne out by a consideration of the systems' 
energetics a t  the final computed time, i.e. t = 161.009. The ohmic dissipation of the 
mean magnetic energy is given by : 

Z,s_', q(z)J2(z,t = 161.009)dz = 0.63515. 

The ohmic disipation of the perturbed magnetic energy is given by : 

~ 0 2 ~ ~ ~ l ~ ( z ) . j z ( x , z , t  = 161.009)dxdz = 0.015828. 
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The viscous dissipation of the kinetic energy is given by : 

v I,”” J:l d ( x ,  z ,  t = 161.009) dx dz = 0.011 039. 

Due to the amount of computer time required to perform these numerical 
simulations, it was impractical to perform an extensive investigation of the variation 
of the system’s behaviour in response to changes in the parameters. However, some 
comparisons can be made between run D and certain of the other runs listed in 
table 1. In run C, which was performed at a lower value of the Lundquist numbers, 
the disturbance saturated at a much earlier time and at a larger magnitude. Further- 
more, the decay of the mean magnetic field was somewhat less than in run D. Run E, 
which was performed at higher values of the Lundquist number than run D, was not 
continued to saturation because the numerical resolution was compromised. In this 
run the peak perturbed energies were somewhat larger than in run D, and when these 
peaks were attained the excitation of high wavenumbers was severe. The decay of 
the mean magnetic field in run E was similar to that in run D (Dahlburg 1985). 

5. Nonlinear analysis 
We present here an analysis which reproduces many of the features observed in 

the numerical simulations. This method was first employed, in a hydrodynamical 
context, by Stuart (1958) in a study of the nonlinear stability properties of plane 
Poiseuille flow and TayloI-Couette flow. The principal assumption underlying the 
analysis is that the generation of higher harmonics of the initial disturbance is 
insignificant, which implies that the most important nonlinear effect is the distortion 
of the mean field profile. Starting from the Reynolds-Orr energy equation, Stuart 
derived a Landau nonlinear stability equation (e.g. Landau & Lifschitz 1959) which 
described the nonlinear behaviour of linearly supercritical instabilities. 

In order to simplify the problem of the nonlinear behaviour of the driven MHD 
sheet pinch, we consider the evolution of a single linearly unstable mode into the 
nonlinear regime. When this primary mode attains finite amplitude there are several 
consequences due to the activation of the nonlinear terms. The mode will interact 
with itself and so generate a secondary harmonic disturbance. The mode will interact 
with its complex conjugate and so act to deform the mean profile. Last, higher 
harmonics of the disturbance will be generated which can act to deform the original 
primary unstable mode. 

Information about the nonlinear evolution of the disturbance can be obtained 
through consideration of the perturbation energy balance. We consider the following 
form of the fields: 

where z(z,t) is defined to be the mean magnetic vector potential. The primed 
quantities represent periodic disturbances with no mean part and of arbitrary 
magnitude. If these primed fields are of finite amplitude, then the mean magnetic 
vector potential will be deformed, so that its time dependence must be taken into 
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account. Using these fields and the governing equations (2.1), a perturbation energy 
balance can be derived: 

where [ ( z )  = Sq(z). 
Equation (5.2) is the driven magnetohydrodynamic equivalent of the Reynolds-Orr 

energy equation for neutral fluids. The term on the left-hand side of (5.2) is the rate 
of change of the total perturbed energy, i.e. both magnetic and kinetic. The first 
integral on the right-hand side of (5.2) represents the interchange of energy between 
the mean magnetic field and the perturbed fields. The direction of the energy 
exchange depends on the sign of this interchange integral. If it is positive it represents 
a transfer of energy from the mean magnetic field to the perturbed fields. If it is 
negative it represents a transfer of energy from the perturbed fields to the mean field. 
The second integral term on the right-hand side represents the perturbed magnetic 
energy losses due to ohmic dissipation. The third integral term represents the kinetic 
energy losses due to viscous dissipation. These two dissipative integrals are always 
positive. Note that growth of the perturbations is possible only if the interchange 
integral is positive and of a magnitude which exceeds the sum of the two dissipative 
integrals. Furthermore, note that the perturbation energy balance implies that a state 
of equilibrium occurs when the interchange integral is equal to the sum of the 
dissipative integrals. 

It it assumed that the only significant nonlinear interactions occur among the mean 
magnetic vector potential and the primary disturbance (magnetic and velocity), 
which implies that the generation of higher harmonics of the primary disturbance 
is a negligible process. This further implies that the distortion of the primary 
disturbance will be negligible. 

On the basis of these assumptions, we consider the effect of the finite amplitude 
perturbation on the mean magnetic vector potential. The equation for the magnetic 
vector potential is, in the (A, $) form: 

where the nonlinear terms have been isolated on the right-hand side. In  accord with 
the assumptions, A and $ can be expanded as follows: 

9 A(x ,  z ,  t )  = Ao(z, t )  +d(z, t )  eias+d*(z, t )  e-iax 
(5.4) 

where * denotes the complex-conjugate, and 01 is defined to be the wavenumber of 
the disturbance parallel to the magnetic field. 
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Upon substitution, the mean magnetic vector potential equation is found to be : 

When aA,/at is negligible, (5.5) will give an expression for the nonlinearly saturated 
mean electric current density. 

We now employ the 'shape assumption' (Stuart 1958), i.e. we assume that the 
primary disturbance is equal to the unstable eigenmode of the system multiplied by 
a time amplification factor h(t) : 

(5.6) 
A ( z ,  z ,  t )  = A,(z, t )  +h(t)  [a(z) eiaZ + a*(z) e-ias], 

$(x, z, t )  = h(t)  [$(z)  eiaZ +$* (z )  eias], 

where a(z) = magnetic eigenfunction, $(z )  = velocity eigenfunction. 
The eigenfunctions are solutions of the equations for the linear instabilities of the 

system. By means of a normal mode analysis (e.g. Dahlburg et al. 1983), these 
equations are found to take the following form: 

(D2 - a2)2 4 = - iwM(D2 -a2) q5 + iaM(DA,) (D2 - a2) a- iaM(D3A,) a, 

(D2-a2+iwS&)}a = iaS&)(DA,) 4, (5.7) I q5(z = 1) = (q.2 = - 1) = 0, a(z = 1)  = a(z  = - 1 )  = 0, 

where D = d/dz, o = complex eigenfrequency, lJz) = l/E(z) = dimensionless 
conductivity. 

These equations are solved numerically by a modification of the algorithm 
described by Dahlburg et al. (1983). This algorithm is based on the Chebyshev-tau 
method devised by Orszag (1971) for numerical solution of the Orr-Sommerfeld 
equation. It is found that for the unstable modes, the perturbed magnetic vector 
potential is always real, whereas the perturbed stream function is always imaginary. 
Furthermore, the unstable modes have zero phase velocity. This implies that on the 
neutral stability surface the complex eigenfrequency is equal to zero. It can be shown 
that in this case the locus of critical points in the (M,S)-space takes the form of a 
hyperbola, with a equal to a constant value (Dahlburg et aE. 1983; Dahlburg 1985). 

With the shape assumption, the mean field equation becomes 

d 
at s a22 dz 

E = 2ah2- (a, $i), aA0 E ( 4  a2A, 

where the subscripts r and i respectively denote the real and imaginary part of the 
eigenfunction. 

In the vicinity of the locus of critical points, aA,/at is negligible, and the mean field 
equation reduces to : 

In the vicinity of the neutral curve, this last expression can be used in the 
perturbation energy balance, which by the shape assumption takes the form 

1 1 
M 

dh2 
dt y1 - = - 4a2sy2 A* - 2 aSEy, +- ya + y,) ~ 2 ,  (5.10) 



then the perturbation energy balance can be further reduced to 

I (5.11) 

(5.12) 

(5.13) 

This equation, first proposed by Landau (cf. Landau & Lifshitz 1959), is widely 
regarded as representing the essence of certain classes of weakly nonlinear behaviour 
(Herbert 1983). C, is the linear growth rate of the perturbed energies. C,, which 
determines the strength of the nonlinear term, is often called the Landau constant. 
If the disturbance saturates nonlinearly, the saturated amplitude p, is given by: 

C 
p =A.  (5.14) 

The integrals (equations (5.1 1 ) )  can be numerically solved easily and accurately 
by Simpson's method. Certain of the results are compared with the benchmark results 
of the eigenvalue code to judge the accuracy of the expansion, where wi is defined 
to be the linear growth rate of the perturbation as computed by the eigenvalue code. 
Results are tabulated for B,(z) = arctan (yz) in table 4, where NC is defined to  be the 
number of Chebyshev polynomials used in solving the eigenvalue problem (5.7). 

We consider case 3 of table 4. The comparison seems likely to be closest in situations 
for which: ( i )  the extent S-SCrit, by which S exceeds its linear stability threshold 
value Scrit, is small; and (ii) the initialization is in terms of a single eigenmode. For 
case 3 the loous of critical points in the ( M ,  ,")-plane is defined by M 8  = 1074, with 
a equal to 1.4. The amplitude phase plane for case 3 is shown in figure 27. For small 
p a region of exponential growth is seen. A s p  increases, the growth rate slows to less 
than exponential. At the equilibrium value, p,, the growth rate is seen to equal zero. 
A prediction can be made for the form of the saturated mean electric current profile 
based on the mean magnetic vector potential equation (5.9). This prediction is shown 
in figure 28. 

c2 
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Case y a M S NC Wi tc, c2 Pe 

1 8 1 50 50 66 0.090282 0.090278 1314 0 . 1 3 7 4 ~ 1 0 - ~  
2 8 1 100 100 66 0.18223 0.18183 4372 0.8318 x lo-' 
3 8 2 100 1 0 0  60 0.22263 0.22257 60756 0 . 7 3 2 7 ~ 1 0 - ~  
4 3 1 100 100 60 0.013658 0.013657 14156 0 . 3 8 6 0 ~ 1 0 - ~  

TABLE 4. Results of nonlinear analysis. B&) = arctan (yz). 

0 1 2  3 4 5 6 7 8 9 1 0  
P( x lo-;) 

FIGURE 27. Amplitude phase plane for case 3. 

The predictions can be compared with the results of run G (see table 1) .  The 
nonlinear code is initialized with the appropriate eigenmode, which is supplied by the 
linear code. The initial perturbations are shown in figure 29, where the z component 
of velocity is directly proportional to  the perturbed stream function. The magnetic 
energy of the k, = 2 mode and its first harmonic are exhibited as functions of time 
in figure 30. The one-dimensional modal kinetic energies are exhibited as functions 
of time in figure 31. The k, = 2 magnetic and velocity modes are seen to  grow linearly 
for about four e-folding times. As can be expected in solving the full nonlinear 
problem, the first harmonic of the primary disturbance is quickly generated, but its 
effect on the linear evolution of the system is negligible. It is seen that the k, = 2 
mode ceases growth at approximately t = 20, with cessation in the k, = 2 kinetic 
energy slightly preceding the cessation in the k, = 2 magnetic energy. At the ultimate 
time computed the perturbations have saturated. At this time the perturbed 
magnetic energy is 0.83% of the mean magnetic energy, and the kinetic energy is 
0.19 % of the mean magnetic energy. 82 % of the perturbed magnetic energy resides 
in the k, = 2 mode, and 17 % in the k, = 4 mode. 98 % of the kinetic energy resides 
in the k, = 2 mode, and 1.9 % in the k, = 4 mode. The assumption that the generation 
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D 
z 

FIGURE 28. Case 3: mean electric current density profiles. Solid line, initial value; dashed line, 
computed saturated value (run G )  ; mixed line, predicted saturated value. 

_ _  - - -  

- 1.0 -0.5 0 0.5 
z 

3 

FIQURE 29. Run G;  initial k, = 2 fields. Solid line, k, = 2 magnetic vector potential; dashed 
line, k, = 2 z velocity component. 
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FIQURE 30. Run G :  natural logarithm of one-dimensional modal magnetic energies ws. time. 
Dashed line, k, = 2; mixed line, k, = 4. 
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FIGURE 31. Run G ;  natural logarithm of one-dimensional modal kinetic energies ws. time. 
Dashed line, k, = 2;  mixed line, k, = 4. 
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FIGURE 32. Run G ;  final k, = 2 fields. Solid line, k, = 2 magnetic vector potential; dashed line, 
k, = 2 z velocity component. 

of higher harmonics of the primary disturbance is negligible seems to be valid for the 
velocity modes, but not valid for the magnetic modes. 

The form of the k, = 2 magnetic and velocity modes at the ultimate time computed 
is shown in figure 32. The shape assumption appears to hold especially well for the 
magnetic disturbance. Some distortion is apparent in the velocity mode in the vicinity 
of the walls, and this distortion can be attributed to the presence of the higher 
harmonics. 

The final mean electric current profile for run G is shown in figure 28. The peak 
value of the mean electric current density, as predicted by (5.9), is 5.86. The saturated 
value computed in run G is 6.63, so that the prediction of the peak value is in error 
by 11.6%. 

The Stuart-Landau approach is based on the shape assumption and the neglect 
of the generation of higher harmonics. The shape assumption appears to  be validated 
by the computations, whereas the neglect of the generation of higher harmonics of 
the primary disturbance does not. This is especially true of the magnetic disturbance. 
The saturated mean electric current density profile is not badly predicted by the 
StuartrLandau approach, but this prediction could probably be improved by taking 
the higher harmonics of the disturbance into account. 

6. Discussion 
Determining the behaviour of the magnetohydrodynamic sheet pinch is an 

inherently difficult problem for two significant reasons. First, there is a lack of 
experimental data. This lack can be attributed to the difficulty of attaining data in 
the physical situations in which MHD sheet pinches occur. Second, due to the 
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complexity of the governing equations severe approximations are required to make 
any analytical headway. For these reasons much of the progress in understanding 
the fully nonlinear behaviour of the MHD sheet pinch has been made by means of 
numerical simulations. 

Most previous numerical work has dealt with the pure decay case, whereas the 
present work has focused on the driven case, in which an external electric field and 
a spatially varying resistivity profile maintain the mean magnetic field against 
resistive decay. Without this driving, the mean magnetic field will decay ohmically 
in time even in the absence of perturbations. For the Lundquist numbers that are 
computationally accessible at present, this decay can be significant. With the driving 
we have employed, the decay of the mean magnetic field can only be initiated by 
nonlinear processes. Any alteration of the mean magnetic field will affect the energy 
transfer between the mean magnetic field and the perturbed fields. I n  the non-driven 
case, this energy transfer is variable from the outset due to the ohmic decay of the 
mean magnetic field. In  the driven case, the energy transfer is altered only when the 
perturbations attain finite amplitude. 

Possibly for this reason, the driven case exhibits phenomena which are not found 
in the decay case. First, from random initial perturbations multiple magnetic O-points 
are seen t o  arise (Matthaeus & Lamkin (1985) report a related result for the decay 
case initialized with large amplitude random perturbations). Secondly, different 
complex and highly nonlinear structures are seen to  evolve in the electric current 
density, namely electric current sheets and attraction currents. Thirdly, a secondary 
instability, the dynamic tearing of the electric current sheet, is seen to occur. This 
leads to a spontaneous generation of multiple magnetic X-points, a feature not 
reported for the decay case. This dynamic tearing recurs, leading to  sawtooth-like 
oscillations in some of the perturbed global quantities as functions of time. 

The long time state of the driven system has also been investigated, both 
computationally and analytically. It is seen in the computations that a state 
resembling nonlinear saturation of the initial perturbations is achieved. The mean 
magnetic energy asymptotically approaches a constant value in time, while the 
perturbed energies remain at fairly constant values for many AlfvQn transit times. 
The perturbed fields, which are defined as having no mean part, are composed of many 
excited x and z wavenumbers in the long time state. 

The detailed structure which develops at long times has not been predicted 
analytically. It is characterized by the simultaneous presence of electric current 
filaments at the magnetic X-points, and attraction currents a t  the magnetic O-points. 
The peak value of the mean electric current decays from its initial value, and then 
remains approximately constant. Magnetofluid jets from the weak field corners of the 
magnetic X-point a t  a steady rate. Regions of high vorticity are seen in the vicinity 
of these jets. The presence of these regions of high vorticity implies that  viscous 
dissipation is a non-ignorable process in the dynamics of the secondary equilibrium 
of the driven magnetohydrodynamic sheet pinch. 

One noteworthy feature that has emerged from these computations is that the 
final-state quasi-equilibrium is not dominated by the linearly most unstable mode 
for the cases initialized with random noise (runs C and D), whereas this mode does 
ultimately dominate in the cases initialized with single eigenmodes (runs B and G ) .  
The final state of runs B and G was dominated by the k, = 2 magnetic and velocity 
modes, which were linearly most unstable, although a significant fraction of the 
energy resided in the first harmonic of this disturbance. For the parameter ranges 
of runs C and D the most unstable linear mode was the k, = 2 mode, but in the final 
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state of the computations many magnetic and velocity modes were excited, with the 
k, = 1 modes being the largest. 

The linear theory does describe quite well the initial phase of development in all 
of the runs performed. In the eigenmode initialized cases, harmonics are generated 
as would be expected in the fully nonlinear problem, but their effect on the initial 
growth of the primary disturbance is negligible. The random initialization runs 
exhibit an initial decay phase followed by exponential growth. This decay phase is 
perhaps due to the decay of the linearly damped modes, although this has not been 
verified. 

No explanation has as yet emerged for the varied final state behaviour, but it is 
clear that i t  is in some way connected with the initial conditions. The eigenmode 
initialization will restrict the time evolution of the system to a smaller region of the 
available phase space than the random initialization will. This implies that more 
complex interactions among the wavenumbers are possible in the random initialization 
case, and that the nonlinear transfer of energy among the wavenumbers will be more 
varied than in the eigenmode initialized case. 

It is perhaps significant that the walls do not enter strongly into the dynamics of 
the system. Some vorticity is seen to be convected from the walls into the region of 
the magnetic X-point, but it does not appear to significantly alter the magnetic 
reconnection process. 
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